Appendix A

Plan Formulation

Puyallup River Basin Flood Risk Management Feasibility Study

Department of the Army Seattle District, US Army Corps of Engineers

March 2016

This page intentionally left blank

Plan Formulation Appendix

Contents

1	Prio	r Studies, Reports and Existing Water Projects	2
	1.1	U.S. Army Corps of Engineers Reports	2
	1.2	Pierce County Reports	3
	1.3	King County Reports	4
	1.4	Other Relevant Reports	5
2	Fina	I Array of Alternatives Evaluation/Comparison	7
	2.1	Comparison of the Final Array of Alternatives1	5

List of Tables

Table 2-1. Alternatives Evaluation for Effectiveness	8
Table 2-2. Alternatives Evaluation for Acceptability	10
Table 2-3. Alternatives Evaluation for Efficiency	12
Table 2-4. Alternatives Evaluation for Completeness	14
Table 2-5. Comparison of Final Array of Alternatives	15

1 Prior Studies, Reports and Existing Water Projects

The following is an annotated list of reports that informed this Study. A full list of references used in the DFR/EIS is documented in the References chapter of the main DFR/EIS document.

1.1 U.S. Army Corps of Engineers Reports

Puyallup River Basin Flood Risk Management - **Report on the 79th Meeting of the USACE Committee on Channel Stabilization, Seattle, Washington – 16-18 September 2014, USACE, December 2014.** This report documents the Seattle District consultation with the USACE Channel Stabilization Committee in 2014 on a range of issues in the Basin, including several specific issues related to the general investigation Study. Committee recommendations informed the scope of effort for sedimentation modeling and analysis to be conducted for the feasibility-level design analysis during the Study.

Report on Puyallup River, Washington. USACE, Seattle District, 1936; Senate Committee Report, 74th **Congress, 2**nd **Session.** The report to Congress submitted by the Chief of Engineers served as the basis for the initial implementation of flood risk management by the Corps within the Puyallup Basin. The recommendation was designed to complement existing flood risk management projects constructed by the Intercounty Improvement Commission (a King County-Pierce County partnership). The recommendation consists of construction of a dam and reservoir near Mud Mountain on the White River; flood-channel enlargement, construction of levees, revetments and bridge alterations through Tacoma, Washington on the lower Puyallup; and construction of bank protection on the upper Puyallup River. MMD was designed to limit flows during floods to 50,000 cfs in the lower Puyallup, the design capacity of the recommended flood-channel enlargement. This project was authorized for construction under the 1936 Flood Control Act and constructed in subsequent years without local cooperation (per Section 2, 1938 Flood Control Act).

General Investigation Reconnaissance Study, Puyallup/White River Watershed, Washington. USACE, Seattle District, December 31, 2002. The 2002 Puyallup / White River Watershed Reconnaissance Study was a preliminary analysis in accordance with the guidelines of Section 905(b) of the 1986 WRDA (Public Law 99-662) to determine if there was a Federal interest in conducting a General Investigation. The Study found there is a Federal interest in pursuing a detailed Feasibility Study in order to address local basin needs for ecosystem restoration and flood risk management. Pierce County was initially identified as the non-Federal sponsor. However, the Reconnaissance Report was not approved due to lack of non-Federal participation.

Mud Mountain Dam: White and Puyallup Rivers Channel Capacity Study, USACE, Seattle District, 2009. The intent of the Channel Capacity Study was to provide MMD water managers with updated channel capacity information for the White and Puyallup Rivers and will assist in determining short-term operational plans at MMD and to alert emergency personnel to potential trouble spots. The study area included RM 0 to 11 of the White River with special interest in the City of Pacific reach RM 5.0 to 6.3. On the Puyallup River, the study covers RMs 0 to 10, from the White River confluence to the mouth.

Mud Mountain Dam Upstream Fish Passage Project, FY 2015 Design and Execution Document, USACE Seattle District, 2015. This document describes the recommended fish passage facility design, construction/life cycle cost estimates and the anticipated schedule for completion of a fish passage facility at MMD. The document focuses on the Barrier Structure at the Buckley Site, the fish trap and haul facility

to be constructed at the Buckley location, and fish release sites upstream of MMD, as required for ESA compliance.

Puyallup River, WA, Reconnaissance Report, USACE, Seattle District, February 5, 2009 (NWD approved April 2010). The purpose of the Reconnaissance Study was to investigate flood risks within the Puyallup River Basin and to determine a Federal interest in continuing a feasibility-level evaluation of flood risk management. The Reconnaissance Study identified significant flood risks in the Puyallup River Basin and resulted in the finding that there is a Federal interest in continuing the study into the feasibility phase.

1.2 Pierce County Reports

Lower Puyallup River, North Levee Setback Hydraulic Modeling, Draft report, November 2014. The purpose of this report, prepared by Northwest Hydraulic Consultants, was to provide the County guidance to inform the feasibility-level design for the general investigation Study with regard to flood risk management in the lower eight miles of the Puyallup River through an evaluation of flood risk management measures.

Pierce County Rivers Flood Hazard Management Plan 2013. The purpose of this plan is to recommend regional policies, programs and projects to reduce risks to public health and safety; reduce public infrastructure and private property damage; reduce maintenance costs; and, improve habitat conditions, while protecting and maintaining the regional economy. The Flood Plan addresses the range of resource and policy issues facing local governments, resource managers, tribes, property owners and businesses and recommends specific actions that Pierce County and its partners can take to address river flooding and channel migration risks.

Lower Puyallup River Flood Protection Investigation: Without Project Condition Analysis. Tetra Tech, prepared for Pierce County. June 2008. This analysis determined existing and 50-year future conditions of the lower Puyallup River floodplain. The objective of the study was to address significant flood-related issues affecting communities along the lower Puyallup River; in addition, to assist in reducing the mapped floodplain area. Analyses in the report include: hydrology, preliminary geotechnical investigation of levees, sediment transport and deposition, hydraulic analysis, and economic analysis. The report concluded that sediments accumulating along the river bottom have raised river water levels so that the tops of the levees are no longer at least 3 feet above the required 1% ACE probability water levels as required for federal accreditation.

Levee Setback Feasibility Analysis: Puyallup River Watershed. GeoEngineers Inc, prepared for Pierce County. June 19, 2008. This report presents the results of a Levee Setback Feasibility Analysis for the Puyallup, Carbon and White Rivers in Pierce County, Washington. The study evaluated 32 setback projects that would best establish dynamic channel forming process, recapture lost flood storage and restore salmon habitat. The report includes a prioritization strategy for a total of 32 sites in the project area, including 20 sites on the Puyallup River, six sites on the Carbon River and six sites on the White River. Based on the evaluation criteria and assigned weighting values, the top site for each watershed were identified - South Fork on the Puyallup River, Alward Road on the Carbon River, and county line on the White River.

Pierce County Flood Risk Assessment, Pierce County Public Works & Utilities Water Programs Division, March 2008. This document is an assessment of flood hazard risk in unincorporated Pierce County, Washington. This Risk Assessment contains the raw data that can be used to measure the net benefit of actions that will reduce flood risk, be compared against the cost of the no action, and determine if the action is cost effective. This assessment determines risk based on two components: 1) the probability that an event will occur and 2) the impact the event will have on people, property, and the economy. Risk Assessment is the process of measuring the potential impacts to these components from a single- and multiple –natural hazards.

Historical Channel Locations of the White River. RM 5- RM28, King County, WA, October 19, 2004. This report used geographic information systems (GIS) to map White River historical channel locations from the King County line upstream to MMD, utilizing aerial photographs between 1931 and 2000, and General Land Office plat maps from 1867-1891. LiDAR (i.e. remote sensing) mapping of historical channel zones indicates that the White River has occupied nearly its entire floodplain in the recent past; how many years removed from the present is not known without field study. It is also likely that a large portion of the floodplain channels detectable by LiDAR imagery remain active currently. This in turn would imply that the White River, when defined as the river and its floodplain sloughs, at present occupies nearly its entire floodplain.

1.3 King County Reports

2013 King County Flood Hazard Management Plan Update and Progress Report, November 2013. This plan amends the 2006 King County Flood Hazard Management Plan for the Community Rating System. The National Flood Insurance Program's Community Rating System requires an update every five years to King County's Flood Hazard Management Plan. This update to the 2006 King County Flood Hazard Management Plan reflects new information on hazards, vulnerabilities, accomplishments, and proposed actions.

King County Flood Hazard Management Plan. King County. Seattle, Washington. 2006. Flood impacts in King County are far ranging and pose significant threats to public safety and regional economic vitality. This document includes a 10-year action plan which identifies and prioritizes construction, repair and maintenance actions for flood risk management facilities and related projects throughout King County. Projects in the plan include levee and revetment repairs, levee setbacks, acquisition of repetitive loss properties and other at-risk homes, completion of technical mapping and analyses to better understand the location of areas at risk from flooding, and reconnection of rivers and streams with their floodplains to increase floodplain capacity and improve natural conveyance processes.

Economic Connections Between the King County Floodplains and the Greater King County Economy. ECONorthwest. Eugene, Oregon. October 2007. The report addresses the regional economic benefits related to implementing the countywide 2006 King County Flood Hazard Management Plan. The analysis indicates that there is substantial economic interaction between the floodplains and the rest of King County, and suggests there are economic benefits to King County of protecting the floodplain. Because the floodplain region employs many people who live elsewhere in King County, the benefits of flood hazard management accrue beyond the floodplain areas, to the entire King County economy. A one-day shutdown of economic activity in the King County floodplain areas would result in at least \$46 million in foregone economic output in King County.

Comprehensive Emergency Management Plan, King County, December 2008. This update to the 2002 King County Comprehensive Emergency Management Plan reflects King County government's organizational changes and National Incident Management System (NIMS) elements. It provides a

framework for countywide disaster mitigation, prevention, preparedness, response, and recovery activities, detailing authorities, functions, and responsibilities to establish a cooperative plan of action for county departments.

1.4 Other Relevant Reports

Geomorphic Analysis of the River Response to sedimentation Downstream of Mount Rainier, Washington; Open File Report 2012-1242. U.S. Geological Survey (USGS), 2012. USGS completed this study the geomorphology of rivers draining Mount Rainier to identify sources of sediment to the river network, identify important processes in the sediment delivery system, assess current sediment loads in rivers draining Mount Rainier, and assess how rates of sedimentation might continue into the future using published climate-change scenarios.

Channel Conveyance Capacity, Channel Change, and Sediment Transport in the Lower Puyallup, White, and Carbon Rivers, Western Washington; Scientific Investigations Report 2010-5240. U.S. Geological Survey (USGS), 2010. USGS was solicited to complete survey and survey interpretation of river crosssections and sediment analysis for the major tributaries in the Puyallup River basin. The report compares cross-sections from 2009 with river cross-sections from 1984, identifies aggradation (i.e. deposition of material) within the river bed and the effect on stage-discharge relationships.

Socioeconomics of the Puyallup River Basin General Investigation Study Area. Northern Economics. Bellingham, Washington. November, 2011. Northern Economics was contracted by the Corps to complete an inventory of socioeconomic data for the study area. The report contains information related to demographics, employment, housing, and transportation data for existing and projected future forecasts for the region.

Channel and Floodplain Changes, 1931 to 2005, for a Section of the Puyallup River (RM 21.3 to RM 25.2), Pierce County, Washington. Report No. 86-68330-2009-01, Prepared by Lucille A. Piety, U.S. Department of the Interior, Bureau of Reclamation, Technical Service Center, Denver, Colorado. This report analyzed the changes in the river channel and adjacent floodplain caused by placement of restrictive levees, erosion and/or setback levees. The study used historical photographs from 1931-2005. Past photographs indicate that, by 1970, restrictive levees were in place along the entire study section. However, prior to 1931 and 1940 the river corridor was mostly free of human features. Restrictive levees eliminated large areas of the historical channel migration zone (HCMZ) and the adjacent floodplain. Measurements indicate that generally, the HCMZ and adjacent floodplain in these sections expanded to values between pre-levee and leveed conditions. There are also indications of lack of channel stability in areas where levees were allowed to erode or setback. In general, it is not known if the river will recover to pre-levee conditions, as this is dependent not only on conditions within the studied segment but also upstream and downstream segments. The study also concludes that it is also unclear if removal of levees, rather than progressive natural erosion, would speed the recovery process.

Debris Flow, Debris, Avalanche, and Flood Hazards At and Downstream from Mount Rainier, WA. US Geological Survey. 1995. This report discusses debris flows and avalanches from Mount Rainier volcano and the subsequent downstream associated flow risks within the Puyallup River Basin. The report states Mount Rainier presents the most severe flow risks of any volcano in the U.S., with flows sometimes travelling as far as Puget Sound Lowland. The report presents three case histories to illustrate subpopulations of flows with known magnitudes and frequencies, and associated risks.

Commencement Bay Cumulative Impact Study Vol. 1: Assessment of Impacts and Volume 2: Restoration/Mitigation Options. Results of urban and industrial use over time have caused a cumulative effect on the Commencement Bay's aquatic resources. Volume One identifies historic impacts to aquatic resources in the Bay, establish a current baseline of these resources to assist in developing future projects to manage these limited resources in light of the competing uses. Volume Two documents restoration or mitigation options in the Bay area, emphasizing the need to maintain biodiversity by using a landscape approach. Volume Two includes restoration options but is not a restoration plan.

Water quality in the Lower Puyallup River Valley and Adjacent Uplands, Pierce County, Washington (Water-Resources Investigations Report 86-4154). U.S. Geological Survey, Tacoma, WA: 1987. This study was conducted to determine the quality of ground and surface water within and adjacent to the lower Puyallup River valley. Generally, the water is suitable for most typical uses; however, development in the area has led to some degradation of water quality in small streams and of shallow ground water. The study was prepared in cooperation with the Puyallup Tribe of Indians, which plans to increase ground water usage at its existing fish hatchery and a proposed hatchery.

2 Final Array of Alternatives Evaluation/Comparison

The Final Array of Alternative Plans was evaluated and then compared using criteria to determine which alternative would be carried forward as the TSP. The evaluation and comparison analysis was primarily qualitative and used the Principles and Guidelines (P&G) criteria of completeness, effectiveness, efficiency, and acceptability along with sub-sets of the P&G criteria. The evaluation and comparison of the Final Array of Alternatives was based on a conceptual level of design.

The Corps applied quantitative hydraulic analysis to characterize the future without-project and future with-project conditions for the final array of alternative plans, and used qualitative metrics and hydraulic engineering for evaluation, comparison and selection of a tentatively selected plan (TSP). This process also included development of the concept-level design of the TSP, completion of preliminary cost engineering and economic analysis, separable elements analysis to identify economically-justified features of the TSP, and screening based on quantitative economic justification.

Table 2-1 through Table 2-4 summarize the evaluation of the two action alternatives exclusively against the No Action alternative. Each alternative plan was assessed using the significant effects and outputs criteria or evaluation criteria. This assessment was qualitative based on the level of detail for hydraulic, hydrologic, economic, engineering and design, and applied in this phase of the Study. The evaluation included a qualitative analysis of each evaluation criterion on a plan by plan basis. The evaluation analysis between each alternative plan and the No Action alternative used a scoring system to distinguish the magnitude of the effects between the alternatives. The scoring methodology is different for each P&G criterion section. Each table includes a description of the scoring system used to evaluate the alternative plan against the No Action Alternative.

This process is summarized in Chapter 3 of the main DFR/EIS report.

Table 2-1. Alternatives Evaluation for Effectiveness

					ATIVES EVALUATION ANALYSIS							
			Alterna	tive 1: No Action	_	Alternative 2	: Levee Modification	-	Alternative 3: Levee Modifi	cation w/ Sediment Ma	nagement	
			(Carbon, Middle Puyallup, and			(Carbon, Middle Puyallup, and			(Carbon, Middle Puyallup, and		(White	
			Upper Puyallup)	(Lower Puyallup)	(White River)	Upper Puyallup)	(Lower Puyallup)	(White River)	Upper Puyallup)	(Lower Puyallup)	River)	
			1 = severe increase in flood risks ,									
			2 = increase flood risks ,									
	ALTERNATIVES		3 = no change/maintains the sam	e flood risks throughout	the planning horizon	l,						
	EVALUATION	CODE DEFINITION	4 = reduces flood risks,									
	CRITERIA	SCORE DEFINITION	5 = significantly reduces flood risk	IS								
		Short term (1-10										
	Flood Damage	vears after										
	Reduction	construction)	3	2	2	5	5	5	4	4	4	
	The higher the											
	reduction of flood											
	risk the higher the	mid-term (10-30 years										
	score	after construction)	2	1	1	4	4	4	3	3	3	
		long term (30-50										
		years after	1	1	1					4	4	
		construction)	1	1	L	4	4	4	4 Alternatives were evaluated at a 1	4 1% ACE probability over	4	
						Alternatives were evaluated and cor	mnared at a 1% ACE nroh	ability at the end	planning horizon via maintenance	dredging to address the	anticinated	
			The No Action Alternative would n	ot generally reduce flood	risks in the study	of the 50-year planning period of an	alvsis. Sediment depositi	on is the main	future loss of channel capacity du	e to sediment depositio	n. Dredging	
			area. There are projects currently	planned along the Upper	Puyallup River	driver of future conditions changes.	To achieve a 1% ACE pro	bability at the end	alone in many areas does not provide a 1% ACE risk management.			
		Evolution Analysis	(Calistoga Levee) and along the W	hite River (Countyline Lev	ee) that will	of the planning period of analysis, flo	ood risk reduction at the	beginning of the	Therefore, dredging is supplemented with levee modifications (raises			
		Evaluation Analysis	provide localized flood risk reduct	on. However, general flo	od risk is expected	planning horizon would be greater the	han 1% ACE at many loca	tions under	and new levees in those areas wh	ere levees do not currei	ntly exist)	
ESS			to increase in the future due to los	ss of channel capacity from	n sediment	Alternative 2 resulting in a higher level	vel of flood risk reduction	n early in the	where needed. Future sediment of	leposition volumes are l	based on	
/EN			deposition. Sediment deposition i	n the study area is the ma	ain driver of	planning period of analysis than und	ler Alternative 3. Future	sediment	historic trends. This alternative w	ould significantly reduce	e flood risks	
Ē			increased flood risk in the future.	Alternative analysis assun	ned MMD	deposition volumes are based on his	storic trends. Alternative	analysis assumed	within the Basin. Alternative analy	ysis assumes MMD oper	ation per the	
EFE (operation per the Water Control P	lan.		MMD operation per the Water Cont	rol Plan.	1	Water Control Plan.			
		SUBTOTAL (Short-, mid_ and long-term										
		scores were each										
		weighted. Short-term										
		score x 10, mid-term										
		score x 20 and long-										
		term score x 20. Total										
		weighted score was										
		divided by 50year										
		period of analysis,										
		nearest whole one-										
		tenth)	1.8	1.2	1.2	4.2	4.2	4.2	3.6	3.6	3.6	
		Improvement to life								0.0	0.0	
		safety gets a high										
		score (Rated over the										
	Improvement to	50-year period of										
	Life Safety	analysis)	2	2	2	4	4	4	4	4	4	
									This alternative would improve pr	ublic safety and reduce t	he population	
			The No Action Alternative does no	t provide significant impr	ovements to public	By modifying the levees in the Uppe	r Puyallup reach, setting	them back in the	at risk over the period of analysis.	Greater channel capaci	ty of the rivers	
		Evaluation Analysi-	satety, except for areas protected	by the Countyline Levee	Setback along the	lower Puyallup reach and construction	ng new levees in the syst	em would provide	associated with sediment manage	ement and selective leve		
		Evaluation Analysis	planning horizon, sodimentation in	e along the opper Puyall	up River. Over the	a significantly improved public safety	y and reduction in popula	would allow for	capacity of the river and improve	ung to urbanized areas. d reliability of coloct low	ine increased	
			channel canacity and reduce the h	enefit of flood measures	in the without	greater availability of emergency evaluation	acuation routes and less	flooding of	allow for greater availability of en	nergency evacuation rou	ites and less	
			project condition.	enerit of noou measures	in the without	structures including residences, as w	vell as critical infrastructu	ire including	flooding of structures including re	sidences, as well as criti	cal	
	project condition. st											

				schools, emergency services, human designated as evacuation routes.	and health services, and	major roadways	infrastructure including schools, e services, and major roadways des	emergency services, hun signated as evacuation re	nan and health outes.
TOTAL EFFECTIVENESS	3.8	3.2	3.2	8.2	8.2	8.2	7.6	7.6	7.6

Table 2-2. Alternatives Evaluation for Acceptability

						ALTERNATIVES EVALUATION ANALYSIS							
				Alternative 1: No A	ction	Alte	rnative 2: Levee Modification		Alternative 3: L	evee Modification w/ Sedime	nt Management		
		SCORE	(Carbon, Middle			(Carbon, Middle			(Carbon Middle Duvellus				
		DEFINITION	Puyallup)	(Lower Puyallup)	(White River)	Puyallup, and Opper Puyallup)	(Lower Puyallup)	(White River)	and Upper Puyallup)	(Lower Puyallup)	(White River)		
	ALTERNATIVES			,,					, , , , , , , , , , , , , , , , , , ,	, , , , , , , , , , , , , , , , , , , ,			
	EVALUATION		4 - Ulable Detrivery	2 - Clickala Datain									
	CRITERIA	The fewer acres	1= Hignly Detrimental,	z = Slightly Detriment	tal, 3 = No Change, 4= Slightly I	seneticial, and 5 = Highly Be							
		of wetlands											
		adversely											
	Motion do Immostad	impacted, the	4	4	4	2	4	2	1	1	1		
	wetiands impacted	nigher the score	4 The No Action Alternativ	/es assumes that the v	4 vetland areas in the Puvallup	2	4	2	1	1	1		
			River Basin above Comn	nencement Bay are ex	pected to remain relatively	Alternative 2 would slight	ly benefit wetlands through the	e setback of the right					
			unchanged from its exis	ting condition. Currer	t federal, state, and local	bank of the lower Puyallu	p River, slightly degrade wetlar	ids on the White River					
		Evaluation	regulations protect wet	ands and require the i	maintenance of wetland	and degrade wetlands thr	oughout the rest of the study a	irea based on the					
		Analysis	also benefit wetland hal	bitat by expanding ripa	arian wetland areas. It is	the upper watershed area	is. Preliminary review of mappe	ed wetlands (Pierce					
			estimated that 3 to 4% of	of undeveloped upland	d adjacent to Commencement	County and King County in	nventories) indicates few wetla	nds are in alignment.	Alternative 3 would have sim	nilar negative effects as Alterna	ative 2 throughout the study		
			Bay may be converted to	o transitional marsh a	nd salt marsh due to sea level	There would be impacts to	o Other Waters of the U.S. (bel	ow OHW) for	area on wetlands through m	odification of existing levees.	Dredging would result in		
		The lower the							significant impacts to other		[
		adverse impacts											
		to fish habitat,											
	Fish (Salmonid) Habitat Affected	the higher the	2	2	2	2	3	2	1	1	1		
	nabilat / incolea	50010	The No Action Alternativ	ve assumes that water	temperatures in rivers and	_		-	-	-	-		
			lakes are expected to in	crease, particularly du	ring the summer, causing a								
È			decrease in reproductive	e success for the fish a	and salmon species. Increased								
ABII			function for many of the	e species in the study a	area. An increase in agriculture								
EPT			could potentially increase	se run-off into the rive	rs as vegetated cover is								
ACC		Evaluation	removed and soils are d	isturbed multiple time	es per year. Continued								
		Analysis	bridge construction cou	ld substantially alter th	ne land surface, soil,				Alternative 3 would significat	ntly degrade fish habitat throu	ghout the study area		
		·	vegetation, and hydrolo	gy of the study area, v	which could adversely impact				through the removal of sediment within the channel. All areas of the study area				
			wildlife through habitat	loss or modification.	Development near shore may	Altornative 2 would clight	ly honofit fich habitat through t	the cathack of the	contain fish habitat (spawnin	ng, rearing, and holding). Properties 2012 El	osed dredge areas are in		
			aguatic habitat directly	or indirectly by interru	ipting sediment supply,	right bank of lower Puyall	up River, but this is balanced b	y the loss of edge	Chum salmon spawning hots	pot in the Lower Puyallup dree	dging area; Steelhead and		
			increasing turbidity leve	ls and diminishing ligh	t availability to aquatic	cover due to construction	, degraded fish habitat through	new levee	Chinook spawning hotspot ir	the Pacific dredging area; Chi	nook spawning hotspot in		
			vegetation, altering hyd	rology and flow charac	cteristics, raising water	construction on the White	e River as well as the rest of the	e Study area through	the Puyallup River dredge ar	ea. Lower levels of spawning for	or various salmonid species		
		The lower the	temperature, and re-sus				אי ובידבר אבצווובוונא.						
		acres of riparian											
		habitat											
	Riparian Habitat	adversely adversely parian Habitat impacted, the orridor) Affected higher the score 2 2											
	(Corridor) Affected			1	4	2	2	2	2				
			Riparian habitat in the lo	ower basin would cont	tinue to be impacted by the		Labora Charles and Laborary	whether the state					
		presence of levees and bank protection projects adjacent to the river bank Ongoing levee maintenance, i.e. vegetation removal and bank bardening		ts adjacent to the river bank.	Alternative 2 would slight	ly benefit riparian habitat throu riverward land. Recognizing the	ign the levee setback						
		Evaluation would be expected to continue or increase in frequency with the increase				projects identified would	occur in areas where riparian h	abitat is already					
		Analysis	floodplain development	. These maintenance e	efforts would continue to	limited or poor quality , A	Iternative 2 would likely result	in further decline of	Alternative 3 would degrade	riparian habitat, particularly in	n areas where there are in-		
			fragment and limit ripar	ian function. Loss of ri	parian vegetation in the	riparian habitat throughou	ut the rest of the study area; m	itigation actions	channel vegetated gravel bar	rs / islands. Overall less impact	to riparian areas versus		
			r uyanup basin would re	suit in ioss of whullte a	and han habitat, fligher water	could compensate for the	se impacts.		allemative z que to smaller l	leveellength			

		temperatures, less orga recruitment. There are that could offset some of the frequency and inter	nic and nutrient input to the ri- ongoing and future restoration of these impacts. Climate chang usity of flood events.	ver, and limited LWD efforts in the Basin ge could also increase		_	_		-	_	
Floodplain Connectivity	The more floodplain connectivity the higher the score	2	2	2	2	4	2	2	3	2	
	Evaluation Analysis The No Action Alternative includes the Puyallup, White, and Carbon rivers contained within levee systems, which limit the natural sinuosity of the rivers and prevent floodplain connectivity, adversely affecting salmon recovery. This condition is expected to continue to be a limiting factor to habitat availability/quality. The better the alternative Image: Content of the systems is a system of the syste				Floodplain connectivity is significant amount of exis area. Alternative 2 would slightly degrade through t through the new levees o	a limiting factor to salmon ting flood control structure perpetuate this condition he rest of the Puyallup / C n the White.	recovery based on the es throughout the study in the Lower Puyallup, arbon and degrade	Floodplain connectivity is a l amount of existing flood cor would perpetuate this condi the study area.	n connectivity is a limiting factor to salmon recovery based on the significant of existing flood control structures throughout the study area. Alternative 3 pretuate this condition in the lower Puyallup and degrade through the rest o y area.		
Other	The better the alternative meets the non- Federal sponsor's flood risk management objectives, the higher the score	1	1	1	4	4	4	2	2	2	
	derations nigher the score 1 1 1 Evaluation This alternative does not satisfy non-Federal sponsor. This alternative does not provide the assistance the sponsor needs in developing a comprehensive flood risk management solution along the Puyallup River and its main tributaries.				This alternative satisfies t Puyallup River Basin.	he sponsor's need to reduc	ce flood risks within the	2 2 2 This alternative reduces the flood risks within the Basin; however, the alternative is not as favorable to the sponsor due to the dredging impacts to ESA listed species in the Puyallup River and its tributaries. The environmental impacts associated with this alternative require subsequent permitting actions that may be highly challenging for the non-Federal sponsor to achieve. The sponsor is further concerned about O&M costs and frequency needed to maintain the channel			
TOTAL ACCEPTABILITY	OTAL CCEPTABILITY 11 11 11				11	19	12	8	9	8	

Table 2-3. Alternatives Evaluation for Efficiency

					ALT	ERNATIVES EVALU	JATION ANALYSIS							
				Alternative 1: No Action	on		Alternative 2: Levee Mod	dification	Alternat					
		SCORE DEFINITION	(Carbon, Middle Puyallup, and Upper Puyallup)	(Lower Puyallup)	(White River)	(Carbon, Middle Puyallup, and Upper Puyallup)	(Lower Puyallup)	(White River)	(Carbon, Middle Puyallup, and Upper Puyallup)					
	ALTERNATIVES EVALUATION CRITERIA		 1 = Significant increase in O&M responsibilities, mitigation efforts or real estate complexities 2 = Moderate increase in O&M responsibilities, mitigation efforts or real estate complexities 3 = Marginal increase in O&M responsibilities, mitigation efforts or real estate complexities 4 = Negligible increase in O&M responsibilities, mitigation efforts or real estate complexities 5 = No change in O&M responsibilities, mitigation efforts or real estate complexities 											
	O&M Responsibility	The lower the O&M responsibility to manage flood risks the higher the score	2	2	2	4	4	4	1					
FFICIENCY		Evaluation Analysis	Under the No-Action A would continue to rec and to provide the ne for O&M needs to inc of sedimentation and would be a significant projects. Unfortunate existing structures wo protection as needed. maintenance without to provide the needed reliability of its existin timeframe would con	Alternative, existing flood ris quire maintenance to ensure eded level of flood risk man rease as flood risks increase increased development with requirement for the sponso ely, due to local government buld be modified in the time . Existing levees may not red support from other agencie d O&M without initial Federa g flood management system tinue to be challenging for th	sk management system e reliability of the structures agement. It is anticipated . Due to the increasing rate hin the floodplain, there or to increase its flood risk t funding limitations, not all frame and to the level of ceive the needed level of es. The ability for the sponsor al action to increase the n within the planning he sponsor.	This alternative i would provide th contain) the incr system. Althoug this alternative f system thereby o responsibilities o levees in PL 84-9 rehabilitation as	This alternative also ind levee stability. A key m subsequent maintenan the reach that is part o to obtain the required work due to potential i owns lands within the l channel. The sponsor w within this reach. Maintenance dredging lower White reach – 1 Puyallup reach – 2 time dredging could be a cha							
Ξ	Mitigation Efforts	The lower amount of mitigation needed, the higher the score	5	5	5	2	3	2	1					
		Evaluation Analysis	Because the No Action action, no mitigation	n Alternative assumes there would be required.	is no proposed Federal	Mitigation was environmental of for both wetla Alternative 2 wo area with the lev of their study are impacts, wetland refine alignmen accommodate le based on the in vegetation has s setback on the lo	determined based on the riteria and likely scope of and and riparian / sale uld provide the only slight ee setback on the lower P ea would likely require mind d impacts (potentially avo ts), and loss of existing evee modifications. The thersection of the 100 ft mall impacts, therefore a power Puyallup works as m	he scores for the above of the mitigation required monid habitat impacts. It benefit (self-mitigating) uyallup, however the rest tigation for in-water work ided / minimized once we g riparian vegetation to White River alignment buffer and the existing more positive score. The hitigation land.	The mitigation required significant efforts to m wetland and riparian in footprint proposed. Ho habitat that cannot be Tribal biologists, full mi to the major disruptior between a 4 to 1 and 6 option is creation of off channel mitigation wo Alternative 2. Betweer mitigation. Finding this Given the average co \$87,000,000 and \$131,					

ve 3	: Levee Modification w/ Sec	diment Management
	(Lower Puyallup)	(White River)
	1	1
ce d ce d f this pern mpa owe vould is ar cime es, o allen	es levee modifications that in the of this alternative is initia redging. Litigation has result s alternative. In addition, it m nits from the Federal agencie cts to ESA listed species. Fur er Puyallup River riverbed and d have to obtain a permit fro nticipated to occur within the , White River at City of Pacifi ver the planning timeframe. aging responsibility for the sp	Acrease channel conveyance and I construction dredging and ed in a moratorium on dredging in hay be challenging for the sponsor es to conduct the maintenance ther, the Puyallup Indian Tribe d those lands adjacent to the river m the tribe to conduct O&M e lower Puyallup River – 1 time, c – 3 times, and the Upper The frequency of the maintenance onsor.
	1	1

ed for both short and long term impacts from dredging would require nitigate (likely off-site projects TBD). Alternative 3 would have similar mpacts to Alternative 2 but at a smaller scale due to the smaller levee owever, there will be an impact to approximately 195 acres of riverine e avoided. Based on discussions with Pierce County, King County and nitigation of impacts of sediment management would be difficult. Due on of the aquatic environment and long-term effects of the dredging, 6 to 1 mitigation ratio is recommended. The only feasible mitigation fff-channel habitat which has a direct connection to the river. This offbuld take the same form as the off-channel mitigation described for n 784 and 1196 acres of off-channel habitat would be required for is much available acreage in the Puyallup basin would be difficult. ost of \$155,000 per acre for mitigation development, between .,000,000 would be required for the mitigation action.

Real Estate	Higher scores are	5	5	5	3	1	4	3	1	3
Complexity	a magnitude of									
	higher likelihood									
	or ease of									
	acquiring the real									
	estate necessary									
	to implement the									
	project.									
	Evaluation	The No Action Altern	ative assumes that a Federal	project is not constructed	Real Estate is av	ailable or could be made	available utilizing various	Federal regulatory jurisdic	tion only covers the lower 3 r	iver miles of the lower Puyallup
	Analysis	and real estate comp	lexity would be relative to th	e projects undertaken by	acquisition strate	egies for the project, inclu	Iding for levee setbacks,	River. The Puyallup Indian	Tribe (Tribe) retains control	of the remaining portions of the
		the Sponsor. Due to t	the funding limitations (with	out Federal dollars) and	raises, and new l	levees. Real Estate on the	e upper Puyallup River is	Puyallup River. Navigation	nal servitude could be applied	l to the lower 3 miles of the
		diminished project so	cope, the Sponsor would not	seek to acquire the	generally less ur	ban and less developed a	nd therefore is likely	Puyallup River for dredging	g features of the project only.	. Maintenance dredging and O&M
		magnitude of real est	tate that would be required u	under a cost-share project	cheaper and eas	ier to acquire than that o	n the lower Puyallup	efforts would require pern	nits for each separate action f	from the Department of Natural
		with the federal gove	ernment.		River. The lower	, r Puvallup River is general	ly more urban and	Resources and the Tribe fo	, or the rest of the Puvallup Rive	er and the White River. There is a
		Ŭ			developed, and i	includes tribal ownership,	especially along the	high likelihood that support	rt for dredging and permit ac	quisition will become increasingly
					river banks, and	therefore is likely to be m	nore expensive and	difficult and unlikely to ob	tain. As a result, there is a hi	gh uncertainty and risk associated
					difficult to acqui	re. Utilities are also more	prevalent in the densely	with dredging and O&M ad	ctivities along the Puyallup an	d Carbon Rivers. The White River
					populated/urbar	n areas. Willingness of lan	downers, and the ability	has similar project feature	s as Alternative 2 and therefore	ore real estate availability is
					to relocate utiliti	ies will ultimately determ	ine the difficulty and	assumed to be the same.		
					costs associated	with acquisition.				
Meets	Planning Objectives	1 = meets no objecti	ves, increase in flood risks		•			•		
		2 = meets at least 1	planning objective , but the	re is an increase in flood risks						
		3 = meets all plannin	g objectives but, maintains	the same flood risks through	out the planning h	orizon,				
		4 = meets all plannin	g objectives, and slightly red	duces flood risks throughout t	the planning horizo	on				
		5 = meets all plannin	g objectives, and significant	ly reduces flood risks						
	The better	2	1	1	5	5	5	5	5	5
	accomplishment									
	of objectives the									
	higher the score									
		The No Action Altern	ative would not generally red	duce flood risks and meet	Alternatives wer	e evaluated at a 1% ACE μ	probability at the end of	Alternative was evaluated	at a 1% ACE probability over	the 50-year planning horizon via
		any of the planning o	bjectives throughout the pla	nning timeframe. There are	the 50-year plan	ning horizon and will prov	vide capacity for	maintenance dredging to a	address the anticipated future	e loss of channel capacity due to
		projects currently pla	nned along the upper Puyall	up River (Calistoga Levee)	forecasted sedin	nent deposition. This alte	rnative analysis assumes	sediment deposition. Dree	dging alone in many areas do	es not provide a 1% ACE
		and along the White	River (Countyline Levee) that	t will provide localized flood	Mud Mountain	Dam operation per the Wa	ater Control Plan to	protection. Therefore, dre	dging is supplemented with le	evee modifications (raises and new
		risk management. Ho	owever, in general flood risk i	is expected to increase in	assist in managir	ng flood risks within the sy	ystem. All objectives are	levees in those areas when	re levees do not currently exis	st) where needed. Alternative
the future due to loss of channel capacity from sediment deposition. The N		diment deposition. The No	met in the altern	native.		analysis assumes Mud Mo	untain Dam operation per the	e Water Control Plan to assist in		
Action Alternative features in the middle and upper Puyallup River and the						managing flood risks withi	n the system. All objectives a	are met in this alternative.		
Carbon River meet only Objective #5: Optimize use of natural floodplain for										
		conveyance and stor	age within the Puyallup River	Basin.		1	1		1	1
TOTAL EFF	FICIENCY	14	11	13	14	13	15	10	8	10

5	5	5
ed a	at a 1% ACE probability over	the 50-year planning horizon via
to a	ddress the anticipated future	e loss of channel capacity due to
red	ging alone in many areas doe	es not provide a 1% ACE
dred	ging is supplemented with le	evee modifications (raises and new
here	e levees do not currently exis	t) where needed. Alternative
Nou	ntain Dam operation per the	Water Control Plan to assist in
thin	the system. All objectives a	re met in this alternative.

Table 2-4. Alternatives Evaluation for Completeness

						ALTERNATIVES EVALUAT	ALTERNATIVES EVALUATION ANALYSIS						
			Alter	native 1: No Action			Alternative 2		Alternative 3				
			(Carbon, Middle Puyallup, and Upper Puyallup)	(Lower Puyallup)	(White River)	(Carbon, Middle Puyallup, and Upper Puyallup)	(Lower Puyallup)	(White River)	(Carbon, Middle Puyallup, and Upper Puyallup)	Levee Modification w/ Sediment Management (Lower Puyallup)	Levee Modification w/ Sediment Management (White River)		
	External Needs/Risks to Alternative Completeness	The more complete the project the higher the score	1 = Incomplete project, d 2 = Partially complete, m 3= Complete project with 4= Complete project but 5 = Complete project with	omplete project, dependent on external needs/risks tially complete, meets some of the planning objectives, but is dependent on external needs/risks nplete project with significant external project needs/risks nplete project but moderate external project needs/risks mplete project with minimal external project needs/risks									
COMPLETENESS		Evaluation Analysis	The No Action Alternative i dependency upon external project will need to seek ac sponsor and or other stake fulfill the project objectives	is not a complete alter I flood risks manageme dditional investments cholders and governme s within the planning t	native due to its ent actions. This by the non-Federal ent agencies to imeframe.	This alternative is complete. If to purchase for the setback le The Puyallup Indian Tribe own required property for a levee from the Puyallup Indian Tribe Puyallup reach riverbed. None alternative plan; however, its requirements are not yet defin	However, this alternative wo vees, levee raises, and new l is lands along the lower Puya setback. In addition, this alte e for any in-water works; sind e of these features are outsic external needs are moderate ned.	uld require availability of lands levees as a part of the project. allup River that would be ernative would require a permit ce the tribe also owns the lower de of the scope of the e. In addition, mitigation	This alternative is compl new levees, and a permi and any in-water works. Puyallup River would no this alternative to remai maintenance dredging v management. This altern and coordination with F is conducted. None of t plan; however, its extern dredging would need to contaminants to determ dredging would be nece availability of sites is lim location.	ete but would require purcha t from the Puyallup Indian Tri In this alternative, dredging a t be feasible without a levee n complete throughout the pl yould be required to maintain native would require a permit ederal resource agencies each hese features are outside of t nal needs would be significant be characterized for physical ine appropriate placement lo ssary. In addition, mitigation v ited. Volume of material coul	se of lands for levee raises, be for the dredging works alone along the lower component. In addition, for lanning period of analysis, the level of flood risk from the Corps of Engineers in time maintenance dredging he scope of the alternative c. Material removed during characteristics and cation. Maintenance would be extensive and d add challenge to finding a		
	TOTAL COMP	LETENESS	1	1	1	5	4	5	4	3	3		

2.1 Comparison of the Final Array of Alternatives

Table 2-5 below summarizes the comparison of the three alternatives based on the Evaluation Analysis described above. The P&G Criteria were used to compare each alternative plan's significant outputs and effects. This comparison was qualitative and was based on the level of detail for hydraulic, hydrologic, economic, engineering and design, and engineering cost estimates, applied in this phase of the Study process. The comparison analysis between each alternative plan used the scoring totals from each alternative plan's evaluation of significant output and effects as it relates to the P&G criteria. Because the scoring methodology for the evaluation step above was different for each P&G criterion, the scores were then normalized using a multiplier described in the table below, to balance the variability in the scoring methodology.

Table 2-5. Comparison of Final Array of Alternatives

			ALTER	NATIVES COMPARISON A	NALYSIS				
		Alternative 1: No Action	1	A	ternative 2: Levee Modifica	ition	Alternative 3: Sedim	ent Management with Le	vee Modification
	Carbon , Upper Puyallup, Middle Puyallup Rivers	Lower Puyallup	White River	Carbon , Upper Puyallup, Middle Puyallup Rivers	Lower Puyallup	White River	Carbon , Upper Puyallup, Middle Puyallup Rivers	Lower Puyallup	White River
P&G CRITERIA			ł		1	1			
	Effectiveness is the extent to substantial risk and uncertain The overall Study problems ar efforts applied are not enoug	which an alternative plan allevi ty associated with the alternati nd objectives support reducing h to address the problem of ret	ates the specified problems, achieve ve. flood risks and improving life safety petitive damages to the existing leve	s the specified opportunit within the Basin. The No e system, sustain the floor	ies, and attains the planning Action alternative includes P I risk reductions efforts, and	objectives. Another factor ierce County and King Coun are not constructed to prov	that can impact the effection that can impact the effection that the projects to reduce flood vide the needed protection	veness of an alternative is risk and manage flood imp within urban areas. The N	whether there is pacts. However, the No Action alternative
Effectiveness	would continue to lose conve In comparison, both Alternati risk management in the initial maintenance dredging has oc	ve 2 and Alternative 3 would be l years and would decrease its l curred. Both alternatives impre	t deposition and therefore will not re e effective in reducing flood risk. Alte evel of flood risk management due t ove the reliability of the existing leve	equce flood risks within the ernative 2 would provide r o sedimentation and loss e system either as part of	e planning period of analysis nore flood risk reduction in t of channel capacity. Howeve the levee raise, levee setbac	he early years and decrease er, Alternative 3 would prov k, or just an improvement t	e in its effectiveness in the l ide the required flood risk i o increase reliability of the	atter years. Alternative 3 nanagement again as desi structure to reduce flood	would provide flood gned once risks.
	The No Action alternative wor the planning timeframe.	uld not reduce life safety impac	ts due to the continual decrease in c	onveyance capacity within	the riverine system. Altern	ative 2 and 3 would adequa	itely reduce impacts to loss	of life and improve public	safety throughout
Total Effectiveness	3.8	3.2	3.2	8.2	8.2	8.2	7.6	7.6	7.6
Normalized Score Total Score* [normalized max possible score (30)/max									
possible score (10)]	11.4	9.6	9.6	24.6	24.6	24.6	22.8	22.8	22.8
Acceptability	Acceptability is the workabilit implementable meaning that sponsor's flood risk managem When assessing each alternat a substantially higher magnitu to manage sedimentation and risks in the Basin. The most a	y and viability of the alternative the alternative is feasible from nent objectives. Five plan as it relates to Federal ude of mitigation costs, and ma d channel conveyance along wit cceptable alternative to the res	e plan with respect to acceptance by technical, environmental, economic environmental laws and policies, it i y impact the Puyallup Tribe's Usual & th the high costs of routine mainsten source agencies and the non-Federal	the Federal and non-Fede , financial, political, legal, s clear that Alternative 3 is & Accustomed fishing area n dredging maintenance. T sponsor is Alternative 2 b	eral entities and the public ar institutional, and social persp is less acceptable than Altern s. In addition, the non-Feder the No Action alternative is r ecause it would have less im	nd compatibility with existin pectives. Acceptability also ative 2 due to its greater ad ral sponsor is concerned abo not acceptable to the non-Fe pact ESA listed species with	g laws, regulations, and pu considers the extent to wh verse impacts to significant but the inability to obtain me ederal Sponsor and Study st in the system and provides	blic policies. The alternati ich the alternative address resources such as ESA list ecessary permits to dredge akeholders due to its inab additional riparian habita	ve must be ses the non-Federal ted species, requires e the channel system iility to reduce flood t.
Total Acceptability	11	11	11	11	19	12	8	9	8
Normalized Score Total Score*[max possible score (30) / normalized max							_	_	_
possible score (30)]	11	11	11	11	19	12	8	9	8
Efficiency	Efficiency is the extent to whi the main cost drivers to asses magnitude of efficiency. The No Action Alternative has not efficient. Unlike the No Ac cause it to be less efficient the	ch an alternative plan is the mo s efficiency – real estate, opera s fewer responsibilities and/or e ction Alternative, Alternative 2 an Alternative 2 in meeting the	ost cost-effective at alleviating the sp ations & maintenance, and mitigation efforts required to reduce flood risks has significantly higher real estate co planning objectives.	ecified problems and mee In conjunction, each alt than the other alternative omplexity, but is more effe	ting objectives. Without dev ernative was assessed on ho es plans; however, it would n ective in meeting the plannin	veloping costs at this stage of w well it addressed each pla not meet the planning objec g objectives. Alternative 3 h	of the Study, this category c anning objective. These crit tives of the project over the has significantly higher O&N	onsidered the magnitude eria helped evaluate each e planning period of analys A dredging and mitigation	of efforts for each of alternative's sis. Therefore, it is responsibilities which
Total Efficiency	14	11	13	14	13	15	10	8	10
· · ·		•	•	Page 15 of 17			•	•	•

Normalized Score									
Total Score* [normalized max									
possible score (30)/max									
possible score (20)]	21	16.5	19.5	21	19.5	22.5	15	12	15
	Completeness is the extent to which a given alternative plan provides and accounts for all necessary investments or other actions to ensure the realization of the planned effects. The criteria looked at the level of completeness for each								
	addition to identifying any foreseen external needs or risks that could impact project implementation.								
Completeness	The No Action alternative is n	ot a complete alternative plan	due to its dependency upon external	flood risk management a	ctions by non-Federal sponse	or, stakeholders and other g	government agencies to rec	luce flood risk. Alternative	e 2 and Alternative 3
	are complete plans, are not re	elated to other public or private	plans within the Basin, and complet	ely meet the project obje	ctives. However, both of the	se alternatives include some	e risks towards implementa	tion. Risks for Alternative	2 include availability
	of lands owned by the Puyallu	p Tribe along the lower Puyallu	p River reach and the ability to obta	in a permit from the Tribe	e for any in-water works alon	g this reach as well. Risks to	implementation of Alterna	ative 3 include the same as	Alternative 2 along
	with a series of maintenance dredging throughout the planning horizon. This action would include a permit from the Corps and coordination with Federal resource agencies each time maintenance dredging is conducted.								-
Total Completeness	1	1	1	5	4	5	4	3	3
Normalized Score									
Total Score* [normalized max									
possible score (30)/max									
possible score (5)]	6	6	6	30	24	30	24	18	18
	-		-						
TOTAL									
(Total Score Max = 120)	53.4	47.1	49.1	86.6	87.1	89.1	69.8	61.8	63.8

Based on the evaluation and comparison analysis, Alternative 2: Levee Modification Alternative is the recommended TSP, because it cost-effectively meets the flood risk management objectives, has fewer adverse impacts to environmental resources and is more likely to be supported by the sponsor and the public than Alternative 1 or Alternative 3.